Dvouvýběrové testy
Welchův pravostranný t-test
Uvažujme nyní, že máme obdobné zadání, máme však data o průměrné době potřebné na výrobu jednoho výrobku. Pokud by technologické postupy v novém závodě byly efektivnější, průměrná doba výroby by měla být nižší. Data jsou v tabulce níže.
Welchův oboustranný t-test
V případě oboustranného testu řešíme pouze to, zda je mezi středními hodnotami rozdíl. Vraťme se k našemu příkladu s počty vyrobených výrobků ve dvou různých závodech. Nyní tedy rozhodneme pouze o tom, zda se průměrné počty mezi závody liší.
Výběr dvouvýběrového testu
Často je třeba porovnat několik statistických souborů vůči sobě. To znamená, že například u dvou souborů zjišťujeme, jestli některý z nich nemá větší střední hodnotu nebo rozptyl než ten druhý. Pro takový typ úloh budeme používat testy, které jsou navržené na práci s více soubory.
Párový t-test
Uveďme si nyní typické zadání párového testu: Máme data o průměrném počtu vyrobených výrobků 20 pracovníky za jednu směnu. Vedení společnosti následně provedlo změnu výrobních procesů a pro stejných 20 pracovníků provedlo nová měření. Ověřte na hladině významnosti !equation0!, že došlo ke zvýšení průměrné produkce pracovníků.
Párový provostranný t-test
Nyní si na novém datovém souboru stručně popíšeme postup pro pravostranný párový t-test. Opět se budeme pohybovat na hladině významnosti !equation0!.
Párový oboustranný t-test
Zbývá nám poslední varianta testu a tím je oboustranný párový t-test. V případě oboustranného testu řešíme pouze to, jestli se střední hodnoty liší nebo ne. Nerozhodujeme, který ze souborů má menší a který větší střední hodnotu. Vygenerujeme si nový datový soubor, test si ukážeme na !equation0!.
Dvouvýběrový t-test
Nyní se budeme zabývat situací, kdy máme dva soubory, přičemž pozorování z obou souborů nelze spárovat. Soubory tedy mohou mít i odlišný počet pozorování. Předpokládáme však, že soubory mají shodné rozptyly. V takovém případě použijeme dvouvýběrový t-test, někdy též označovaný jako dvouvýběrový Studentův test.
Dvouvýběrový pravostranný t-test
Nyní si ukážeme postup při pravostranném testu. Upravme si nejprve předchozí zadání: Máme data o průměrném počtu výrobků, které neprošly kontrolou kvality (tj. zmetků), vyrobených ve dvou různých závodech, přičemž druhý závod postupuje podle upravených výrobních procesů. Předpokládáme, že počty mají v obou případech shodný rozptyl. Ověřte hypotézu, že změna výrobních postupů vedla ke snížení zmetkovosti.
Dvouvýběrový oboustranný t-test
Poslední variantou je oboustranný test. Opět si upravíme zadání příkladu: Máme data o počtu vyrobených výrobků pracovníky za jednu směnu ve dvou různých závodech jedné společnosti. Ověřte na !equation0! hypotézu, že mezi těmito dvěma závody existuje statisticky významný rozdíl v průměrném počtu vyrobených výrobků.
Welchův t-test
Welchův test používáme pro soubory, jejichž pozorování nejsou spárována a nemůžeme u nich předpokládat shodný rozptyl. V některých učebnicích statistiky je doporučeno začít s ověřením hypotézy o shodě rozptylů pomocí Fischerova testu a dle výsledku poté zvolit variantu t-testu. Tento postup však není korektní.